New access to 1,3-dialkyl-2,3-dihydro-2-imino-1 H -imidazoles and their application to the first total synthesis of naamine \mathbf{B}, a marine 2,3-dihydro-2-imino-1,3-dimethyl- H -imidazole alkaloid

Ikuo Kawasaki, Seikou Nakamura, Satomi Yanagitani, Akiko Kakuno, Masayuki Yamashita and Shunsaku Ohta *

Kyoto Pharmaceutical University, Misasagi Yamashinaku, Kyoto 607-8414, Japan. E-mail: sohta@mb.kyoto-phu.ac.jp

Received (in Cambridge, UK) 27th September 2001, Accepted 22nd October 2001
First published as an Advance Article on the web 14th November 2001

Abstract

1,3-Dialkyl-2,3-dihydro-2-imino- 1 H -imidazole derivatives are synthesized in $49-86 \%$ yield by treatment of 1,3-dialkyl-2-(phenylsulfanyl)imidazolium salts with primary carbamates or amides in the presence of a base such as LDA or NaH , and the first total synthesis of naamine B , a marine 2-imino-2,3-dimethyl-1,3-dihydro-1 H -imidazole alkaloid, is achieved by application of this reaction as a key step.

Introduction

Recently, many types of biologically active imidazole alkaloids have been isolated from marine organisms such as sponges, and they have become one of the focuses of scientific attention. ${ }^{1}$ 1,3-Dialkyl-2,3-dihydro-2-imino- 1 H -imidazoles can be seen as basic skeletons of several biologically interesting compounds, ${ }^{2}$ and a marine alkaloid, naamine B 1, was isolated from the antifungally active extract of the marine sponge Leucetta chagosensis, ${ }^{1 i}$ together with several antitumor (in vivo) imidazole alkaloids, ${ }^{3}$ and its structure is shown in Fig. 1. Although there are several examples of the synthesis of 1,3-dialkyl-2,3-dihydro-2-imino- 1 H -imidazoles based on cyclization chemistry, ${ }^{2 d, f}$ it was reported that attempted direct conversion of an imidazole compound to the 2-imino derivative was not effective. ${ }^{4}$ We have reported total syntheses of several biologically active imidazole alkaloids such as topsentin, ${ }^{5}$ nortopsentins $\mathrm{A}-\mathrm{D},{ }^{6}$ kealiiquinone, ${ }^{7}$ naamine $\mathrm{A},{ }^{8}$ naamidine A^{8} and clathridine, ${ }^{9}$ and this time we selected naamine B as a synthetic target, which could be classified in one of the structural categories among the known imidazole marine alkaloids. In this paper, we would like to disclose a new preparation method for 1,3-dialkyl-2,3-dihydro-2-imino- 1 H -imidazole compounds starting from imidazole compounds and its application to the total synthesis of $\mathbf{1}$.

Results and discussion

In our previous paper, we reported a new synthetic method for the 1,3-dialkyl-1,3-dihydroimidazol-2-ones 4 by treatment of 1,3-dialkyl-2-phenylsulfanyl- 1 H -imidazolium salts 2 with aqueous alkali, and its application to the synthesis of a regioisomer of kealiiquinone, a marine benzimidazole alkaloid (Scheme 1). ${ }^{10}$ This reaction would be initiated by attack of the

Table 1 Preparation of the acylimines 5

Entry	Imidazolium salt				R^{3}	Base (eq.)	Product	
	Compd.	R^{1}	R^{2}	X			Yield (\%) ${ }^{\text {a }}$	Compd.
1	2a	Me	Bn	Br	Me	LDA (1.0)	$70^{\text {b }}$	5a
2	2a	Me	Bn	Br	Me	LDA (2.0)	86	5a
3	2a	Me	Bn	Br	Me	NaH (2.0)	43^{c}	5a
4	2a	Me	Bn	Br	Me	MeONa (2.0)	0^{d}	
5	2a	Me	Bn	Br	Ph	LDA (2.0)	49	5b
6	2a	Me	Bn	Br	$\mathrm{Bu}^{t} \mathrm{O}$	LDA (2.0)	71	5c
7	2a	Me	Bn	Br	BnO	NaH (2.0)	54	5d
8	2b	Me	Me	I	$\mathrm{Bu}^{t} \mathrm{O}$	LDA (2.0)	69	5e
9	2c	Bn	Bn	Br	$\mathrm{Bu}^{t} \mathrm{O}$	LDA (2.0)	70	5 f
10	$2 \mathrm{~d}^{e}$	Et	Bn	Br	$\mathrm{Bu}^{t} \mathrm{O}$	LDA (2.0)	65	5 g

${ }^{a}$ Isolated yield. ${ }^{b}$ Trace amount of $\mathbf{4 a}$ was also obtained. ${ }^{c}$ A by-product $\mathbf{4 a}$ was isolated in 48% yield. ${ }^{d}$ Quantitative yield of $\mathbf{4 a}$ was obtained. ${ }^{e}$ The crude quaternary salt was used.

Scheme 2 Reagents and conditions: (a) Zn , conc. $\mathrm{HCl}, \mathrm{AcOH}, 97 \%$; (b) $\mathrm{NBS}, \mathrm{THF}, 72 \%$; (c) t - $\mathrm{BuLi}, \mathrm{THF}, 63 \%$; (d) $\mathrm{Et}{ }_{3} \mathrm{SiH}, \mathrm{TFA}, \mathrm{DCM}, 80 \%$; (e) MeI, AcOEt; (f) LDA, tert-butyl carbamate, 13: 56% and 14: 21% (2 steps); (g) TFA, DCM, quant. (from 13).
imidazole $6^{11 a}$ was selected as the starting material, and the benzylic hydroxy group of 6 was removed by reduction with a zinc powder-conc. HCl system to give the sulfide 7 in 97% yield (Scheme 2). The 4 -position of the product was brominated by treatment with NBS in THF, ${ }^{12}$ and then the resultant bromide $\mathbf{8}$ was coupled with the aldehyde 9^{13} in the presence of t-BuLi to give the alcohol $\mathbf{1 0}$ in 63% yield from $\mathbf{8} .{ }^{14}$ Reduction of the alcohol $\mathbf{1 0}$ with the combination of triethylsilane (5 equiv.) and TFA (6 equiv.) ${ }^{15}$ proceeded effectively to give the silyl ether $\mathbf{1 1}$ in 80% yield. The imidazolium iodide $\mathbf{1 2}$ was prepared in the usual manner, and the salt $\mathbf{1 2}$ was treated with tert-butyl carbamate in the presence of LDA at $-78{ }^{\circ} \mathrm{C}$ to give the desired N-Boc imino compound 13 in 56% yield accompanied by a 21% yield of the 2 -oxoimidazoline 14 .

Treatment of iminocarbamate $\mathbf{1 3}$ with TFA to remove the Boc and TBDMS groups gave successfully the powdered material $\mathbf{1}$ in quantitative yield. The spectral data $\left({ }^{1} \mathrm{H}-,{ }^{13} \mathrm{C}\right.$ NMR, MS and IR) of the product $\mathbf{1}$ completely supported the
structure and were well consistent with the reported data of natural naamine B 1 .
In conclusion, we have successfully developed a preparative method for 1,3-dialkyl-2,3-dihydro-2-imino-1 H -imidazole derivatives starting from imidazole compounds, and have achieved the first total synthesis of naamine B in 20% overall yield from 6 .

Experimental

All mps were measured with a Yanaco MP micro-melting-point apparatus and are uncorrected. IR spectra were taken with a Shimadzu IR-435 spectrometer. NMR spectra were measured on a Varian UNITY INOVA $400 \mathrm{NB}\left({ }^{1} \mathrm{H}: 400 \mathrm{MHz},{ }^{13} \mathrm{C}\right.$: $100 \mathrm{MHz})$ or a JEOL EX-300 ($\left.{ }^{1} \mathrm{H}: 300 \mathrm{MHz},{ }^{13} \mathrm{C}: 75 \mathrm{MHz}\right)$ spectrometer with tetramethylsilane as internal standard, and chemical shifts δ are reported in ppm. HRMS was measured on a JEOL JMS-SX 102A QQ (FAB) or a JEOL JMS BU-20 (EI)
spectrometer, respectively. Silica gel (Merck Art. 7734) for column chromatography and silica gel $60 \mathrm{PF}_{254}$ (Nacalai Tesque Inc.) for preparative TLC (PLC) were used.

General procedure for synthesis of 1,3-dialkyl-2,3-dihydro-2-imino-1 H -imidazoles 5; Synthesis of 1-benzyl-2-tert-butoxy-carbonylimino-2,3-dihydro-3-methyl-1 H -imidazole 5 c as an example

tert-Butyl carbamate $(176 \mathrm{mg}, 1.5 \mathrm{mmol})$ was added to a stirred solution of LDA [prepared from diisopropylamine (1 mmol) and $n-\mathrm{BuLi}(1 \mathrm{mmol}$; 1.6 M in n-hexane) $]$ in THF (4 mL) under N_{2} and ice cooling, and the mixture was stirred for 30 min at $0{ }^{\circ} \mathrm{C}$, then the salt $\mathbf{2 a}{ }^{10}$ ($181 \mathrm{mg}, 0.5 \mathrm{mmol}$) was added to the mixture and stirring was continued for 12 h at ambient temperature. Water (1 mL) was added to the reaction mixture and the solvent was removed under reduced pressure. The product was extracted with $\mathrm{CHCl}_{3}(20 \mathrm{~mL} \times 4)$ and the organic layer was dried over anhydrous sodium sulfate. The solvent was evaporated to give an oily residue, which was purified by column chromatography $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH} 20: 1\right)$ on silica gel to give $5 \mathrm{c}\left(102 \mathrm{mg}, 71 \%\right.$) as colorless crystals, $\mathrm{mp} 88-91^{\circ} \mathrm{C}$ (from AcOEt- n-hexane); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 2954,1626,1557,1361,1340$, 1233, 1157, $1063 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.51(\mathrm{~s}, 9 \mathrm{H}), 3.48$ $(\mathrm{s}, 3 \mathrm{H}), 5.01(\mathrm{~s}, 2 \mathrm{H}), 6.34(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=2.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.24-7.34(\mathrm{~m}, 5 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 28.6,34.0,49.8$, $77.0,113.9,116.1,128.2,128.4,128.9,135.4,150.9,159.4$ [Calc. for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 66.88; H, 7.37; N, 14.62. Found: C, $66.59 ; \mathrm{H}, 7.37$; N, 14.41%. FAB-HRMS (pos.) m / z Calc. for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{2}: M+\mathrm{H}, 288.1712$. Found: $(\mathrm{M}+\mathrm{H})^{+}$, 288.1707].

2-Acetylimino-1-benzyl-2,3-dihydro-3-methyl-1 \mathbf{H}-imidazole

5a. This was prepared in a similar manner to that used for the preparation of $\mathbf{5 c}$ except for the use of acetamide instead of tert-butyl carbamate. Title compound was purified by column chromatography $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH} 10: 1\right)$ and obtained as a pale yellow oil ($99 \mathrm{mg}, 86 \%$); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 2954,1575,1514,1380$ $\mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.15(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 4.99$ $(\mathrm{s}, 2 \mathrm{H}), 6.45(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-$ $7.36(\mathrm{~m}, 5 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 25.7,33.9,50.1,114.8$, $116.7,128.4(\times 2), 128.9,134.8,150.9,176.3$ [EI-HRMS (pos.) m / z Calc. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}: M, 229.1215$. Found: $\mathrm{M}^{+}, 229.1205$].

2-Benzoylimino-1-benzyl-2,3-dihydro-3-methyl-1 H -imidazole

5b. This was prepared in a similar manner to that used for the preparation of 5 c except for the use of benzamide instead of tert-butyl carbamate. Title compound was purified by PLC $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH} 50: 1\right)$ and obtained as a pale yellow oil (72 mg , $49 \%) ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 2950,1591,1522,1375,1322 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}$ ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $3.54(\mathrm{~s}, 3 \mathrm{H}), 5.06(\mathrm{~s}, 2 \mathrm{H}), 6.50(\mathrm{~d}, J=2.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.61(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.46(\mathrm{~m}, 8 \mathrm{H}), 8.23(\mathrm{dd}, J=$ $8.2,2.2 \mathrm{~Hz}, 2 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 34.1,49.9,114.5,116.6$, 127.5, 128.2, 128.4, 128.80, 128.81, 130.1, 135.1, 138.5, 151.9, 170.6 [EI-HRMS (pos.) m / z Calc. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}: M, 291.1371$. Found: M^{+}, 291.1361].

1-Benzyl-2-benzyloxycarbonylimino-2,3-dihydro-3-methyl-

$\mathbf{1 H}$-imidazole 5d. This was prepared in a similar manner to that used for the preparation of $\mathbf{5 c}$ except for the use of benzyl carbamate and NaH instead of tert-butyl carbamate and LDA respectively. Title compound was purified by column chromatography $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH} 50: 1\right)$ and obtained as pale yellow needles ($86 \mathrm{mg}, 54 \%$), mp 93-95 ${ }^{\circ} \mathrm{C}$ (from AcOEt- n-hexane); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 2964,1627,1570,1380,1079 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 3.46(\mathrm{~s}, 3 \mathrm{H}), 4.99(\mathrm{~s}, 2 \mathrm{H}), 5.16(\mathrm{~s}, 2 \mathrm{H}), 6.37(\mathrm{~d}, J=$ $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.45(\mathrm{~m}, 10 \mathrm{H}) ; \delta_{\mathrm{C}}$ $\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 34.0,49.9,66.6,114.2,116.3,127.2,127.7$, 128.1, 128.2, 128.3, 128.7, 135.1, 138.3, 150.7, 159.2 [Calc. for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}: \mathrm{C}, 71.01 ; \mathrm{H}, 5.96 ; \mathrm{N}, 13.08$. Found: C, 70.77 ; H, $5.92 ; \mathrm{N}, 12.99 \%$. EI-HRMS (pos.) m / z Calc. for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}$: $M, 321.1477$. Found: $\left.\mathrm{M}^{+}, 321.1466\right]$.

2-tert-Butoxycarbonylimino-2,3-dihydro-1,3-dimethyl-1 \mathbf{H} -
imidazole 5e. This was prepared in a similar manner to that used for the preparation of $\mathbf{5 c}$ except for the use of $\mathbf{2 b}{ }^{\mathbf{1 0}}$ instead of $\mathbf{2 a}$. Title compound was purified by column chromatography $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH} 5: 1\right)$ and obtained as colorless needles (73 mg , 69%), mp 146-149 ${ }^{\circ} \mathrm{C}$ (from diethyl ether); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 2954$, $1625,1576,1360,1318,1243,1162,1049 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(400 \mathrm{MHz} ;$ $\left.\mathrm{CDCl}_{3}\right) 1.52(\mathrm{~s}, 9 \mathrm{H}), 3.44(\mathrm{~s}, 6 \mathrm{H}), 6.49(\mathrm{~s}, 2 \mathrm{H}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz} ;$ CDCl_{3}) 28.5, 33.8, 76.9, 115.5, 150.8, 159.4 [Calc. for $\mathrm{C}_{10} \mathrm{H}_{17^{-}}$ $\mathrm{N}_{3} \mathrm{O}_{2}: \mathrm{C}, 56.85 ; \mathrm{H}, 8.11$; N, 19.89. Found: C, $56.55 ; \mathrm{H}, 8.01$; N, 20.15%. FAB-HRMS (pos.) m / z Calc. for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{2}: M+\mathrm{H}$, 212.1399. Found: $\left.(M+\mathrm{H})^{+}, 212.1405\right]$.

1,3-Dibenzyl-2-phenylsulfanyl-1 H -imidazolium bromide 2c

A mixture of 1-benzyl-2-phenylsulfanyl- H -imidazole ${ }^{11 b}$ (146 $\mathrm{mg}, 0.55 \mathrm{mmol}$) and benzyl bromide $(0.098 \mathrm{~mL}, 0.83 \mathrm{mmol})$ in AcOEt (0.83 mL) was refluxed under stirring for 3 h , and then kept overnight at room temperature. The crude solid was collected and recrystallized from acetone-diethyl ether to give pure 2c as colorless crystals ($229 \mathrm{mg}, 95 \%$), mp $170-171{ }^{\circ} \mathrm{C}$; $v_{\text {max }}$ $\left(\mathrm{CHCl}_{3}\right) 2917,1492,1449,1234,1170,1091 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 5.63(\mathrm{~s}, 4 \mathrm{H}), 6.95(\mathrm{dd}, J=8.2,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.32$ $(\mathrm{m}, 13 \mathrm{H}), 8.16(\mathrm{~s}, 2 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 53.6,125.4,128.9$, 129.0, 129.1, 129.2, $129.3(\times 2), 130.4,132.5,137.9$ (Calc. for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{BrN}_{2} \mathrm{~S}: \mathrm{C}, 63.16 ; \mathrm{H}, 4.84$; N, 6.40. Found; C, 63.22; H, 5.04; N, 6.23\%).

1,3-Dibenzyl-2-tert-butoxycarbonylimino-2,3-dihydro$\mathbf{1 H}$-imidazole $5 f$

This was prepared in a similar manner to that used for the preparation of $\mathbf{5 c}$ except for the use of $\mathbf{2 c}(87 \mathrm{mg}, 0.2 \mathrm{mmol})$ instead of $2 \mathbf{a}$. Title compound was purified by column chromatography $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH} 20: 1\right)$ and obtained as colorless crystals ($51 \mathrm{mg}, 70 \%$), mp 130-132 ${ }^{\circ} \mathrm{C}$ (from AcOEt-n-hexane); $v_{\max }\left(\mathrm{CHCl}_{3}\right)$ 2957, 1625, 1558, 1331, 1287, 1154, 1073, $1016 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.52(\mathrm{~s}, 9 \mathrm{H}), 5.03(\mathrm{~s}, 4 \mathrm{H}), 6.29$ $(\mathrm{s}, 2 \mathrm{H}), 7.26-7.37(\mathrm{~m}, 10 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 28.5,50.0$, 77.1, 114.3, 128.2, 128.5, 128.8, 135.1, 150.4, 159.3 [Calc for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 72.70; H, 6.93; N, 11.56. Found; C, 72.42; H, 6.88; N, 11.62\%. FAB-HRMS (pos.) m / z Calc. for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{2}$: $M+\mathrm{H}, 364.2025$. Found: $\left.(M+\mathrm{H})^{+}, 364.2029\right]$.

1-Benzyl-3-ethyl-2-phenylsulfanyl- $\mathbf{H} \mathbf{H}$-imidazolium bromide 2d

$n-\mathrm{BuLi}(1.6 \mathrm{M}$ in n-hexane; $8.03 \mathrm{~mL}, 12.84 \mathrm{mmol})$ was added to a stirred solution of 1-ethyl- 1 H -imidazole ${ }^{16}(1.029 \mathrm{~g}, 10.70$ $\mathrm{mmol})$ in THF $(43 \mathrm{~mL})$ under N_{2} at $-78^{\circ} \mathrm{C}$. After stirring of the mixture for 15 min at the same temperature, diphenyl disulfide ($2.803 \mathrm{~g}, 12.84 \mathrm{mmol}$) was added and the whole was stirred for 3 h at $-78{ }^{\circ} \mathrm{C}$. The mixture was acidified with 10% HCl and washed with diethyl ether. The aqueous layer was basified with $\mathrm{K}_{2} \mathrm{CO}_{3}$ powder and extracted with $\mathrm{AcOEt}(20 \mathrm{~mL} \times$ 2). The organic layer was dried over anhydrous sodium sulfate and evaporated to give an oily residue, which was purified by column chromatography (AcOEt- n-hexane $1: 2$) on silica gel to give 1-ethyl-2-phenylsulfanyl-1 H -imidazole $(2.069 \mathrm{mg}, 95 \%$) as a colorless oil; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right)$ 2949, 1580, 1474, 1428, 1270, 1087 $\mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.28(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 4.04(\mathrm{q}, J=$ $7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.11-7.27(\mathrm{~m}, 7 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.1$, 42.0, 121.7, 126.5, 127.9, 129.1, 130.5, 135.2, 137.2 [EI-HRMS (pos.) m / z Calc. for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{~S}: M$, 204.0721. Found: M^{+}, 204.0724].

A mixture of 1-ethyl-2-phenylsulfanyl- 1 H -imidazole (390 $\mathrm{mg}, 1.91 \mathrm{mmol})$ and benzyl bromide $(0.341 \mathrm{~mL}, 2.87 \mathrm{mmol})$ in AcOEt (2.9 mL) was refluxed under stirring for 3 h , and then kept overnight at room temperature. The solvent was evaporated off to give a brown syrup, which was washed with AcOEt $(5 \mathrm{~mL} \times 2)$ and evaporated to give a crude salt $\mathbf{2 d}(676 \mathrm{mg}, 94 \%)$ as a brown gum, which was used in the next reaction without further purification; $v_{\max }\left(\mathrm{CHCl}_{3}\right) 2919,1477,1439,1233$,
$1090 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.39(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 4.44$ (q, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.70(\mathrm{~s}, 2 \mathrm{H}), 7.02-7.04(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.37$ $(\mathrm{m}, 8 \mathrm{H}), 8.30(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.40(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}$ ($100 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $15.3,45.4,53.4,125.2,125.7,128.7,128.9$, 129.0, 129.08, 129.10, 129.11, 130.4, 132.8, 136.9 [FAB-HRMS (pos.) m / z Calc. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{~S}: M-\mathrm{Br}, 302.1869$. Found: $\left.(\mathrm{M}-\mathrm{Br})^{+}, 302.1863\right]$.

1-Benzyl-2-tert-butoxycarbonylimino-3-ethyl-2,3-dihydro1 H -imidazole 5 g

This was prepared in a similar manner to that used for the preparation of $5 \mathbf{c}$ except for the use of a solution of $\mathbf{2 d}(128 \mathrm{mg}$, $0.34 \mathrm{mmol})$ in THF $(1.0 \mathrm{~mL})-\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.2 \mathrm{~mL})$ instead of crystalline 2a. Title compound was purified by column chromatography $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH} 20: 1\right)$ and obtained as colorless crystals ($67 \mathrm{mg}, 65 \%$), mp $156-157^{\circ} \mathrm{C}$ (from AcOEt- n-hexane); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 2958,1625,1558,1331,1290,1158,1085$, $1017 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.36(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.51$ (s, 9H), 3.90 (q, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), $5.00(\mathrm{~s}, 2 \mathrm{H}), 6.34(\mathrm{~d}, J=2.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.54(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.37(\mathrm{~m}, 5 \mathrm{H}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$; CDCl_{3}) 14.1, 28.4, 41.1, 49.9, 76.8, 113.7, 114.2, 128.1, 128.5, 128.7, 135.1, 149.9, 159.2 [Calc. for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{2}: \mathrm{C}, 67.75$; H, 7.69; N, 13.94. Found: C, 67.46; H, 7.53; N, 14.20\%. FABHRMS (pos.) m / z Calc. for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{2}: M+\mathrm{H}, 302.1869$ Found: $\left.(\mathrm{M}+\mathrm{H})^{+}, 302.1863\right]$

5-(4-Methoxybenzyl)-1-methyl-2-phenylsulfanyl-1 H -imidazole 7

Zn powder (320 mg) was added to a mixture of $\mathbf{6}^{11 a}(261 \mathrm{mg}$, $0.8 \mathrm{mmol})$ and conc. $\mathrm{HCl}(0.8 \mathrm{~mL})$ in $\mathrm{AcOH}(8 \mathrm{~mL})$, and the whole was stirred at $80^{\circ} \mathrm{C}$ for 3 h . The reaction mixture was filtered and the filtrate was concentrated, diluted with water $(3 \mathrm{~mL})$, and basified by addition of $\mathrm{K}_{2} \mathrm{CO}_{3}$ powder. The products was extracted with $\operatorname{AcOEt}(20 \mathrm{~mL} \times 4)$, and the organic phase was dried over anhydrous sodium sulfate. The solvent was evaporated off to give an oily residue, which was purified by PLC (AcOEt) to give $7(151 \mathrm{mg}, 97 \%)$ as a pale yellow oil; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 2935,1608,1506,1449,1241,1173,1093,1031$ $\mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.39(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}$, $2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.97-7.26(\mathrm{~m}, 8 \mathrm{H})$; $\delta_{\mathrm{C}}(75 \mathrm{MHz}$; CDCl_{3}) $30.5,31.2,55.2,114.1,126.3,127.6,129.0(\times 2), 129.1$, 129.3, 134.4, 135.3, 137.6, 158.4 [EI-HRMS (pos.) m / z Calc. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{OS}: M, 310.1140$. Found: $\left.\mathrm{M}^{+}, 310.1135\right]$.

4-Bromo-5-(4-methoxybenzyl)-1-methyl-2-phenylsulfanyl1 H -imidazole 8

NBS ($251 \mathrm{mg}, 1.41 \mathrm{mmol}$) was added to a solution of 7 ($364 \mathrm{mg}, 1.17 \mathrm{mmol}$) in THF (2.3 mL) at $0^{\circ} \mathrm{C}$ under N_{2}, and the whole was stirred at $0^{\circ} \mathrm{C}$ for 4 h . After addition of water $(15 \mathrm{~mL})$, the product was extracted with $\operatorname{AcOEt}(50 \mathrm{~mL} \times 2$), and the the organic phase was dried over anhydrous sodium sulfate. The solvent was evaporated off to give an oily residue, which was purified column chromatography ($\mathrm{AcOEt}-n$-hexane $1: 5)$ on silica gel to give $\mathbf{8}(327 \mathrm{mg}, 72 \%)$ as colorless needles, $\mathrm{mp} 73-77^{\circ} \mathrm{C}$ (from n-hexane); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 2965,1607,1506$, $1239,1093 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.38(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}$, $3 \mathrm{H}), 3.94$ (s, 2H), 6.83 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.03 (d, $J=8.8 \mathrm{~Hz}$, 2H), 7.12-7.27 (m, 5H); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 29.8,32.3,55.3$, 114.2, 115.7, 126.7, 127.9, 128.4, 128.8, 129.2, 132.1, 134.2, 137.1, 158.3 [Calc. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{BrN}_{2} \mathrm{OS}: \mathrm{C}, 55.53 ; \mathrm{H}, 4.40 ; \mathrm{N}$, 7.20. Found: C, 55.62 ; H, 4.59 ; N, 6.99%. EI-HRMS (pos.) m / z Calc. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{BrN}_{2} \mathrm{OS}: ~ M, 388.0244$. Found: $\mathrm{M}^{+}, 388.0243$. EI-MS (pos.) m/z (\% base): 391 (9), 390 (39), 389 (16), 388 (38), 387 (8), 121 (100)].

4-\{[3(-tert-Butyldimethylsiloxy)-4-methoxyphenyl]hydroxymethyl $\}$-5-(4-methoxybenzyl)-1-methyl-2-phenylsulfanyl1 H -imidazole 10

t-BuLi (1.56 M in pentane; $0.58 \mathrm{ml}, 0.90 \mathrm{mmol}$) was added
dropwise to a stirred solution of $\mathbf{8}(72 \mathrm{mg}, 0.18 \mathrm{mmol})$ and 9 $(253 \mathrm{mg}, 0.95 \mathrm{mmol})$ in THF (1 mL) under N_{2} at $-78^{\circ} \mathrm{C}$. After stirring of the mixture for 10 min at the same temperature, water (2 mL) was added. The product was extracted with AcOEt ($10 \mathrm{~mL} \times 3$) and the organic layer was dried over anhydrous sodium sulfate. The solvent was evaporated off to give an oily residue, which was purified by column chromatography (AcOEt-n-hexane $1: 3$) on silica gel to give $\mathbf{1 0}$ $(65 \mathrm{mg}, 63 \%)$ as a pale yellow oil; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 2913,1606$, $1579,1504,1447,1270,1243,841 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $0.10(\mathrm{~s}, 6 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H})$, 3.77 ($\mathrm{s}, 2 \mathrm{H}$), $5.74(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.72-6.83(\mathrm{~m}, 5 \mathrm{H}), 6.94-7.26(\mathrm{~m}$, $7 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-4.7,18.4,25.7,29.0,31.4,55.2$, $55.5,69.7,111.8,114.0,119.5,120.0,126.3,127.2,128.8,129.1$, 129.2, 129.4, 135.1, 135.8, 136.2, 142.5, 144.8, 150.3, 158.2 [EI-HRMS (pos.) m / z Calc. for $\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SSi}: M, 576.2478$. Found: $\left.\mathrm{M}^{+}, 576.2482\right]$.

4-[3(-tert-Butyldimethylsiloxy)-4-methoxybenzyl]-5-(4-methoxybenzyl)-1-methyl-2-phenylsulfanyl-1 H -imidazole 11

To a stirred solution of $\mathbf{1 0}(23 \mathrm{mg}, 0.04 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(0.5 \mathrm{~mL})$ were added triethylsilane $(0.032 \mathrm{~mL}, 0.20 \mathrm{mmol})$ and TFA ($0.018 \mathrm{~mL}, 0.24 \mathrm{mmol}$) under N_{2} and ice-cooling. The solution was stirred for 3.5 h at ambient temperature and quenched by the addition of saturated aq. $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$. The products were extracted with $\operatorname{AcOEt}(10 \mathrm{~mL} \times 2)$ and the organic layer was dried over anhydrous sodium sulfate. The solvent was evaporated off to give an oily residue, which was purified by PLC (AcOEt- n-hexane $1: 1$) on silica gel to give $\mathbf{1 1}$ $(18 \mathrm{mg}, 80 \%)$ as a pale yellow oil; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 2918,1505$, $1458,1438,1272,1240,839 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.11(\mathrm{~s}$, 6 H), $0.96(\mathrm{~s}, 9 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 6 \mathrm{H}), 3.84(\mathrm{~s}, 2 \mathrm{H}), 3.90(\mathrm{~s}$, $2 \mathrm{H}), 6.71-6.86(\mathrm{~m}, 7 \mathrm{H}), 7.04-7.24(\mathrm{~m}, 5 \mathrm{H}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$; CDCl_{3}) $-4.7,18.4,25.7,29.2,31.5,33.3,55.2,55.6,112.1$, $114.0,121.3,121.5,126.0,127.0,128.8,129.1,129.6,129.9$, 133.3, 135.3, 135.9, 140.3, 144.8, 149.2, 158.2 [EI-HRMS (pos.) m / z Calc. for $\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{3}$ SSi: $M, 560.2529$. Found: M^{+}, $560.2519]$.

2-tert-Butoxycarbonylimino-4-[3(-tert-butyldimethylsiloxy)-4-methoxybenzyl]-2,3-dihydro-5-(4-methoxybenzyl)-1,3-dimethyl-1 H -imidazole 13 and 4-[3(-tert-butyldimethyl-siloxy)-4-methoxybenzyl]-5-(4-methoxybenzyl)-1,3-dimethyl-2,3-dihydro-1 H -imidazol-2-one 14

A mixture of $\mathbf{1 1}(72 \mathrm{mg}, 0.13 \mathrm{mmol})$ and methyl iodide $(0.1 \mathrm{~mL}$, 1.6 mmol) in $\mathrm{AcOEt}(1 \mathrm{~mL})$ was refluxed under stirring for 1 h . The solvent was evaporated off to give the crude salt 12, which was used in the next reaction without further purification.
tert-Butyl carbamate ($46 \mathrm{mg}, 0.39 \mathrm{mmol}$) was added to a stirred solution of LDA [prepared from diisopropylamine $(0.312 \mathrm{mmol})$ and n-BuLi $(0.26 \mathrm{mmol} ; 1.6 \mathrm{M}$ in n-hexane $)]$ in THF (1 mL) under N_{2} and ice-cooling, and the mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$, then a solution of the salt $\mathbf{1 2}$ in THF $(0.8 \mathrm{~mL})$ was added to the mixture and stirring was continued for 12 h at ambient temperature. Water (3 mL) was added to the reaction mixture and the solvent was removed under reduced pressure. The product was extracted with $\mathrm{CHCl}_{3}(15 \mathrm{~mL} \times 3)$ and the organic layer was dried over anhydrous sodium sulfate. The solvent was evaporated off to give an oily residue, which was purified by $\mathrm{PLC}\left(\mathrm{CHCl}_{3}-\mathrm{MeOH} 20: 1\right)$ on silica gel to give $13\left(R_{\mathrm{f}} 0.20,42 \mathrm{mg}, 56 \%\right)$ and $14\left(R_{\mathrm{f}} 0.34,13 \mathrm{mg}, 21 \%\right)$ as a colorless oil.
Compound 13; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 2910,1623,1551,1521,1335$, $1244,1163,1047,838 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.12(\mathrm{~s}, 6 \mathrm{H})$, $0.96(\mathrm{~s}, 9 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}), 3.775(\mathrm{~s}, 3 \mathrm{H})$, $3.783(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 2 \mathrm{H}), 6.58(\mathrm{dd}, J=8.2,2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.63(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $-4.7,18.4,25.6,28.2,28.5(\times 2), 31.0,31.1,55.2,55.4,77.5$,
$112.3,114.3,120.7,120.8,122.8,123.0,128.3,128.75,128.80$ 145.2, 148.4, 149.9, 158.0, 158.5 [FAB-HRMS (pos.) m / z Calc. for $\mathrm{C}_{32} \mathrm{H}_{48} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Si}: M+\mathrm{H}, 582.3363$. Found: $(\mathrm{M}+\mathrm{H})^{+}$, 582.3358]

Compound 14; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right)$ 2916, 1669, 1646, 1506, 1457, 1243, 1092, $838 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.12(\mathrm{~s}, 6 \mathrm{H}), 0.98$ $(\mathrm{s}, 9 \mathrm{H}), 3.030(\mathrm{~s}, 3 \mathrm{H}), 3.034(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 5 \mathrm{H})$, $3.79(\mathrm{~s}, 3 \mathrm{H}), 6.64-6.66(\mathrm{~m}, 2 \mathrm{H}), 6.75(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ -4.7, 18.4, 25.6, 27.7, 27.8, 28.2, 28.4, 55.2, 55.5, 112.1, 114.1, 117.4, 117.6, 120.7, 120.8, 128.8, 129.8, 130.3, 145.1, 149.7, 153.7, 158.3 [EI-HRMS (pos.) m / z Calc. for $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}$: M, 482.2601. Found: $\left.\mathrm{M}^{+}, 482.2597\right]$

Naamine 11

TFA $(0.2 \mathrm{~mL})$ was added to a solution of $\mathbf{1 3}(24 \mathrm{mg}, 0.04 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under N_{2}, and the solution was stirred for 48 h at ambient temperature. The products were extracted with $\mathrm{CHCl}_{3}(10 \mathrm{~mL} \times 3)$ after addition of saturated aq. $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$, and the organic phase was dried over anhydrous sodium sulfate. The solvent was evaporated to give an oily residue, which was purified column chromatography $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH} 5: 1\right)$ on silica gel to give $\mathbf{1}(15 \mathrm{mg}, 100 \%)$ as a white amorphous powder; $v_{\max }(\mathrm{KBr}) 3312,3143,2907,1680$, $1609,1508 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}\right) 3.26(\mathrm{br} \mathrm{s}$, $3 \mathrm{H}), 3.27(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H})$, 3.89 (br s, 2H), 6.57 (dd, $J=8.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.62$ (d, $J=$ $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.03(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}\right)$ $27.8,27.9,29.7,29.8,55.2,55.8,111.4,114.1,114.4,118.8$, 122.67, 122.73, 127.4, 128.4, 128.7, 146.3, 146.4, 146.6, 158.7 [EI-HRMS (pos.) m / z Calc. for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{3}: M, 367.1896$. Found: $\left.\mathrm{M}^{+}, 367.1889\right]$.

Acknowledgements

This research was supported in part by the Frontier Research Program and a Grant-In-Aid for Encouragement of Young Scientists (to I. K.) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan.

References

1 (a) A. A. Mourabit and P. Potier, Eur. J. Org. Chem., 2001, 237; (b) F. Cafieri, R. Carnuccio, E. Fattorusso, O. Taglialatela-Scafati and T. Vallefuoco, Bioorg. Med. Chem. Lett., 1997, 7, 2283; (c) X. Fu, J. R. Barnes, T. Do and F. J. Schmitz, J. Nat. Prod., 1997, 60, 497; (d) K. A. Alvi, B. M. Peters, L. M. Hunter and P. Crews, Tetrahedron, 1993, 49, 329; (e) J. R. Lewis, Nat. Prod. Rep., 1992, 9, 81; (f) P. A.

Keifer, R. E. Schwartz, M. E. S. Koker, R. G. Hughes, Jr., D. Rittschof and K. L. Rinehart, J. Org. Chem., 1991, 56, 2965; (g) S. Sakemi and H. H. Sun, J. Org. Chem., 1991, 56, 4304; (h) R. K. Akee, T. R. Carrol, W. Y. Yoshida and P. J. Scheuer, J. Org. Chem., 1990, 55, 1944; (i) S. Carmely, M. Ilan and Y. Kashman, Tetrahedron, 1989, 45, 2193; (j) S. Tsujii, K. L. Rinehart, S. P. Gunasekera, Y. Kashman, S. S. Cross, M. S. Lui, S. A. Pomponi and M. C. Diaz, J. Org. Chem., 1988, 53, 5446.

2 (a) K. Wagner, C. Erdelen, W. Andersch, U. WachendorffNeumann, A. Turberg and N. Mencke, PCT Int. Appl., WO 99 35141 (Chem. Abstr. 1999131 102279p); (b) H. Kristinsson, H. Rempfler and H. Nussbaumer, PCT Int. Appl., WO 98408 (Chem. Abstr: 1998128 114965k); (c) K. Nagarajan, V. P. Arya, T. George, M. D. Nair, V. Sudarsanam, D. K. Ray and V. B. Shrivastava, Indian J. Chem., Sect. B, 1984, 23, 342; (d) G. L. Ellrich and W. D. Dixon Can. Pat. 1, 052 384, 1979, (Chem. Abstr. 197991 74614d); (e) E. J. Prisbe, J. P. H. Verheyden and J. G. Moffatt, J. Org. Chem., 1978, 43, 4784; (f) W. D. Dixon, US Pat., 3859 302, 1975, (Chem. Abstr. 1975 82 170923p)
3 B. R. Copp, C. R. Fairchild, L. Cornell, A. M. Casazza, S. Robinson and C. M. Ireland, J. Med. Chem., 1998, 41, 3909.
4 I. Mancini, G. Guella, C. Debitus, J. Waikedre and F. Pietra, Helv. Chim. Acta, 1996, 79, 2075.
5 I. Kawasaki, H. Katsuma, Y. Nakayama, M. Yamashita and S. Ohta, Heterocycles, 1998, 48, 1887

6 (a) I. Kawasaki, M. Yamashita and S. Ohta, Chem. Pharm. Bull., 1996, 44, 1831; (b) I. Kawasaki, M. Yamashita and S. Ohta, J. Chem. Soc., Chem. Commun., 1994, 2085.
7 (a) I. Kawasaki, N. Taguchi, M. Yamashita and S. Ohta, Chem. Pharm. Bull., 1997, 45, 1393; (b) I. Kawasaki, N. Taguchi, T. Yamamoto, M. Yamashita and S. Ohta, Tetrahedron Lett., 1995, 36, 8251.
8 S. Ohta, N. Tsuno, S. Nakamura, N. Taguchi, M. Yamashita, I. Kawasaki and M. Fijieda, Heterocycles, 2000, 53, 1939.

9 S. Ohta, N. Tsuno, K. Maeda, S. Nakamura, N. Taguchi, M. Yamashita and I. Kawasaki, Tetrahedron Lett., 2000, 41, 4623.
10 S. Nakamura, N. Tsuno, M. Yamashita, I. Kawasaki, S. Ohta and Y. Ohishi, J. Chem. Soc., Perkin Trans. 1, 2001, 429.

11 The 1-alkyl-2-phenylsulfanyl-1H-imidazoles were easily prepared from the corresponding 1 -alkyl-2-lithio- 1 H -imidazoles by treatment with diphenyl disulfide; (a) S. Ohta, T. Yamamoto, I. Kawasaki, M. Yamashita, H. Katsuma, R. Nasako, K. Kobayashi and K. Ogawa, Chem. Pharm. Bull., 1992, 40, 2681; (b) M. Moreno-Manas, J. B. N. Lladó and R. Pleixats, J. Heterocycl. Chem., 1990, 27, 673.
12 S. Ohta, T. Yamamoto, I. Kawasaki, M. Yamashita, Y. Nagashima and T. Yoshikawa, Chem. Pharm. Bull., 1994, 42, 821.
13 G. R. Pettit, S. B. Singh and G. M. Cragg, J. Org. Chem., 1985, 50, 3404.

14 We examined several reaction conditions for the preparation of $\mathbf{1 0}$ and found that this reaction procedure gave the best result (see Experimental section).
15 (a) F. A. Carey and H. S. Temper, J. Am. Chem. Soc., 1969, 91, 2967; (b) C. T. West, S. J. Donnelly, D. A. Kooistra and M. P. Doyle, J. Org. Chem., 1973, 38, 2675.
16 H. J. J. Joozen, J. J. M. Drouen and O. Piepers, J. Org. Chem., 1975, 40, 3279.

